Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.034
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 15: 1372584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745665

RESUMO

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Assuntos
Dependovirus , Vetores Genéticos , Vacinas Antimaláricas , Malária Vivax , Plasmodium vivax , Animais , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Plasmodium vivax/imunologia , Plasmodium vivax/genética , Malária Vivax/prevenção & controle , Malária Vivax/transmissão , Malária Vivax/imunologia , Camundongos , Dependovirus/genética , Dependovirus/imunologia , Feminino , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Modelos Animais de Doenças , Vaccinia virus/genética , Vaccinia virus/imunologia , Humanos , Camundongos Endogâmicos BALB C , Imunização Secundária , Eficácia de Vacinas
2.
Front Immunol ; 15: 1380660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720894

RESUMO

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Babesia bovis , Babesiose , Epitopos de Linfócito B , Proteínas de Protozoários , Animais , Bovinos , Babesia bovis/imunologia , Epitopos de Linfócito B/imunologia , Babesiose/imunologia , Babesiose/parasitologia , Babesiose/prevenção & controle , Anticorpos Antiprotozoários/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Motivos de Aminoácidos , Sequência Conservada , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Sequência de Aminoácidos , Vacinas Protozoárias/imunologia
3.
Front Cell Infect Microbiol ; 14: 1384393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720960

RESUMO

The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.


Assuntos
Antígenos de Protozoários , Ensaio de Imunoadsorção Enzimática , Proteínas de Protozoários , Sorotipagem , Doenças dos Ovinos , Toxoplasma , Toxoplasmose Animal , Animais , Ovinos , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasma/classificação , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/parasitologia , Suínos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Sorotipagem/métodos , Anticorpos Antiprotozoários/sangue , Peptídeos/imunologia , Doenças dos Suínos/parasitologia , Doenças dos Suínos/diagnóstico , Genótipo
4.
Nat Commun ; 15(1): 3792, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710711

RESUMO

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasma/enzimologia , Toxoplasma/genética , Glicosilação , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Humanos , Cristalografia por Raios X , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Parede Celular/metabolismo , Animais
5.
Sci Rep ; 14(1): 10039, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693166

RESUMO

According to the World Health Organization, Chagas disease (CD) is the most prevalent poverty-promoting neglected tropical disease. Alarmingly, climate change is accelerating the geographical spreading of CD causative parasite, Trypanosoma cruzi, which additionally increases infection rates. Still, CD treatment remains challenging due to a lack of safe and efficient drugs. In this work, we analyze the viability of T. cruzi Akt-like kinase (TcAkt) as drug target against CD including primary structural and functional information about a parasitic Akt protein. Nuclear Magnetic Resonance derived information in combination with Molecular Dynamics simulations offer detailed insights into structural properties of the pleckstrin homology (PH) domain of TcAkt and its binding to phosphatidylinositol phosphate ligands (PIP). Experimental data combined with Alpha Fold proposes a model for the mechanism of action of TcAkt involving a PIP-induced disruption of the intramolecular interface between the kinase and the PH domain resulting in an open conformation enabling TcAkt kinase activity. Further docking experiments reveal that TcAkt is recognized by human inhibitors PIT-1 and capivasertib, and TcAkt inhibition by UBMC-4 and UBMC-6 is achieved via binding to TcAkt kinase domain. Our in-depth structural analysis of TcAkt reveals potential sites for drug development against CD, located at activity essential regions.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Trypanosoma cruzi , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Ligação Proteica
6.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739798

RESUMO

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Assuntos
Peptídeos , Plasmodium falciparum , Proteínas de Protozoários , Ubiquitina Tiolesterase , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/farmacologia , Antimaláricos/química , Ubiquitina/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico
7.
Biochem Biophys Res Commun ; 715: 149975, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38676997

RESUMO

Many GTPases have been shown to utilize ATP too as the phosphoryl donor. Both GTP and ATP are important molecules in the cellular environments and play multiple and discrete functional role within the cells. In our present study, we showed that one of the purine metabolic enzymes Adenylosuccinate synthetase from Leishmania donovani (LdAdSS) which belongs to the BioD-superfamily of GTPases can also carry out the catalysis by hydrolysing ATP instead of its cognate substrate GTP albeit with less efficiency. Biochemical and biophysical studies indicated its ability to bind to ATP too but at a higher concentration of ATP compared to that of GTP. Sequence analysis and molecular dynamic simulations suggested that residues of the switch loop and the G4-G5 (593SAXD596) connected motif of LdAdSS plays a role in determining the nucleotide specificity. Though the crucial interaction between Asp596 and the nucleotide is broken when ATP is bound, interactions between the Ala594 and the adenine ring of ATP could still hold ATP in the GTP binding site. The results of the present study suggested that though LdAdSS is GTP specific, it still shows ATP hydrolysing activity.


Assuntos
Trifosfato de Adenosina , Adenilossuccinato Sintase , Guanosina Trifosfato , Leishmania donovani , Leishmania donovani/enzimologia , Leishmania donovani/metabolismo , Leishmania donovani/genética , Trifosfato de Adenosina/metabolismo , Guanosina Trifosfato/metabolismo , Adenilossuccinato Sintase/metabolismo , Adenilossuccinato Sintase/química , Especificidade por Substrato , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/química
8.
mBio ; 15(5): e0285023, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564676

RESUMO

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Assuntos
Adenosina Trifosfatases , Proteínas de Ligação a DNA , Mitose , Complexos Multiproteicos , Plasmodium falciparum , Proteínas de Protozoários , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Plasmodium falciparum/crescimento & desenvolvimento , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Eritrócitos/parasitologia , Técnicas de Inativação de Genes , Humanos
9.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573856

RESUMO

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Assuntos
Eritrócitos , Plasmodium falciparum , Polissacarídeos , Proteínas de Protozoários , Humanos , Antígenos de Protozoários/metabolismo , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Lectinas/metabolismo , Lectinas/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
10.
J Proteomics ; 300: 105178, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636824

RESUMO

Employing microbial systems for the bioremediation of contaminated waters represent a potential option, however, limited understanding of the underlying mechanisms hampers the implication of microbial-mediated bioremediation. The omics tools offer a promising approach to explore the molecular basis of the bioremediation process. Here, a mass spectrometry-based quantitative proteome profiling approach was conducted to explore the differential protein levels in cadmium-treated Paramecium multimicronucleatum. The Proteome Discoverer software was used to identify and quantify differentially abundant proteins. The proteome profiling generated 7,416 peptide spectral matches, yielding 2824 total peptides, corresponding to 989 proteins. The analysis revealed that 29 proteins exhibited significant (p ≤ 0.05) differential levels, including a higher abundance of 6 proteins and reduced levels of 23 proteins in Cd2+ treated samples. These differentially abundant proteins were associated with stress response, energy metabolism, protein degradation, cell growth, and hormone processing. Briefly, a comprehensive proteome profile in response to cadmium stress of a newly isolated Paramecium has been established that will be useful in future studies identifying critical proteins involved in the bioremediation of metals in ciliates. SIGNIFICANCE: Ciliates are considered a good biological indicator of chemical pollution and relatively sensitive to heavy metal contamination. A prominent ciliate, Paramecium is a promising candidate for the bioremediation of polluted water. The proteins related to metal resistance in Paramecium species are still largely unknown and need further exploration. In order to identify and reveal the proteins related to metal resistance in Paramecia, we have reported differential protein abundance in Paramecium multimicronucleatum in response to cadmium stress. The proteins found in our study play essential roles during stress response, hormone processing, protein degradation, energy metabolism, and cell growth. It seems likely that Paramecia are not a simple sponge for metals but they could also transform them into less toxic derivatives or by detoxification by protein binding. This data will be helpful in future studies to identify critical proteins along with their detailed mechanisms involved in the bioremediation and detoxification of metal ions in Paramecium species.


Assuntos
Cádmio , Paramecium , Proteoma , Proteínas de Protozoários , Cádmio/toxicidade , Cádmio/farmacologia , Proteoma/metabolismo , Proteoma/efeitos dos fármacos , Paramecium/metabolismo , Paramecium/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Biodegradação Ambiental , Proteômica/métodos
11.
Mol Microbiol ; 121(5): 1063-1078, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558112

RESUMO

Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.


Assuntos
Metaloendopeptidases , Proteínas de Protozoários , Fatores de Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Metaloendopeptidases/metabolismo , Metaloendopeptidases/genética , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Macrófagos/parasitologia , Macrófagos/metabolismo , Animais , Leishmania/metabolismo , Leishmania/genética , Transporte Proteico , Sistemas CRISPR-Cas , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/genética
12.
Int J Biol Macromol ; 267(Pt 2): 131509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608978

RESUMO

Giardia intestinalis is one of the most widespread intestinal parasites and is considered a major cause of epidemic or sporadic diarrhea worldwide. In this study, we aimed to develop a rapid aptameric diagnostic technique for G. intestinalis infection. First, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process generated DNA aptamers specific to a recombinant protein of the parasite's trophozoite. Ten selection rounds were performed; each round, the DNA library was incubated with the target protein conjugated to Sepharose beads. Then, the unbound sequences were removed by washing and the specific sequences were eluted and amplified by Polymerase Chain Reaction (PCR). Two aptamers were selected, and the dissociation constants (Kd), were determined as 2.45 and 16.95 nM, showed their high affinity for the G. intestinalis trophozoite protein. Subsequently, the aptamer sequence T1, which exhibited better affinity, was employed to develop a label-free electrochemical biosensor. A thiolated aptamer was covalently immobilized onto a gold screen-printed electrode (SPGE), and the binding of the targeted protein was monitored using square wave voltammetry (SWV). The developed aptasensor enabled accurate detection of the G. intestinalis recombinant protein within the range of 0.1 pg/mL to 100 ng/mL, with an excellent sensitivity (LOD of 0.35 pg/mL). Moreover, selectivity studies showed a negligible cross-reactivity toward other proteins such as bovine serum albumin, globulin, and G. intestinalis cyst protein.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Giardia lamblia , Proteínas de Protozoários , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnica de Seleção de Aptâmeros/métodos , Técnicas Eletroquímicas/métodos , Proteínas de Protozoários/química , DNA de Cadeia Simples/química , Giardíase/diagnóstico , Giardíase/parasitologia
13.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673995

RESUMO

In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.


Assuntos
Inibidores de Cisteína Proteinase , Nitrilas , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico , Inibidores de Cisteína Proteinase/química , Malária/tratamento farmacológico , Nitrilas/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico
14.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612558

RESUMO

Cruzipain inhibitors are required after medications to treat Chagas disease because of the need for safer, more effective treatments. Trypanosoma cruzi is the source of cruzipain, a crucial cysteine protease that has driven interest in using computational methods to create more effective inhibitors. We employed a 3D-QSAR model, using a dataset of 36 known inhibitors, and a pharmacophore model to identify potential inhibitors for cruzipain. We also built a deep learning model using the Deep purpose library, trained on 204 active compounds, and validated it with a specific test set. During a comprehensive screening of the Drug Bank database of 8533 molecules, pharmacophore and deep learning models identified 1012 and 340 drug-like molecules, respectively. These molecules were further evaluated through molecular docking, followed by induced-fit docking. Ultimately, molecular dynamics simulation was performed for the final potent inhibitors that exhibited strong binding interactions. These results present four novel cruzipain inhibitors that can inhibit the cruzipain protein of T. cruzi.


Assuntos
Doença de Chagas , Cisteína Endopeptidases , Humanos , Simulação de Acoplamento Molecular , Proteínas de Protozoários , Doença de Chagas/tratamento farmacológico , Desenho de Fármacos
15.
Parasit Vectors ; 17(1): 178, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576040

RESUMO

BACKGROUND: To successfully replicate within the host cell, Toxoplasma gondii employs several mechanisms to overcome the host cell defenses and mitigate the harmful effects of the free radicals resulting from its own metabolic processes using effectors such as thioredoxin proteins. In this study, we characterize the location and functions of a newly identified thioredoxin in T. gondii, which was named Trx4. METHODS: We characterized the functional role of Trx4 in T. gondii Type I RH and Type II Pru strains by gene knockout and studied its subcellular localization by endogenous protein HA tagging using CRISPR-Cas9 gene editing. The enzyme-catalyzed proximity labeling technique, the TurboID system, was employed to identify the proteins in proximity to Trx4. RESULTS: Trx4 was identified as a dense granule protein of T. gondii predominantly expressed in the parasitophorous vacuole (PV) and was partially co-localized with GRA1 and GRA5. Functional analysis showed that deletion of trx4 markedly influenced the parasite lytic cycle, resulting in impaired host cell invasion capacity in both RH and Pru strains. Mutation of Trx domains in Trx4 in RH strain revealed that two Trx domains were important for the parasite invasion. By utilizing the TurboID system to biotinylate proteins in proximity to Trx4, we identified a substantial number of proteins, some of which are novel, and others are previously characterized, predominantly distributed in the dense granules. In addition, we uncovered three novel proteins co-localized with Trx4. Intriguingly, deletion of trx4 did not affect the localization of these three proteins. Finally, a virulence assay demonstrated that knockout of trx4 resulted in a significant attenuation of virulence and a significant reduction in brain cyst loads in mice. CONCLUSIONS: Trx4 plays an important role in T. gondii invasion and virulence in Type I RH strain and Type II Pru strain. Combining the TurboID system with CRISPR-Cas9 technique revealed many PV-localized proximity proteins associated with Trx4. These findings suggest a versatile role of Trx4 in mediating the processes that occur in this distinctive intracellular membrane-bound vacuolar compartment.


Assuntos
Toxoplasma , Animais , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Virulência/genética , Fatores Imunológicos/metabolismo , Tiorredoxinas/genética
16.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683374

RESUMO

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Assuntos
Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Brasil , Humanos , Malária Vivax/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Caspases/genética , Caspases/metabolismo , Expressão Gênica/genética
17.
Infect Immun ; 92(5): e0011324, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38624215

RESUMO

Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1ß, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Macrófagos , Malária , Plasmodium yoelii , Plasmodium yoelii/imunologia , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária/imunologia , Malária/parasitologia , Antígenos CD/metabolismo , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Humanos , Feminino , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Ligação Proteica , Transdução de Sinais , NF-kappa B/metabolismo , NF-kappa B/imunologia , Membrana Celular/metabolismo , Membrana Celular/imunologia , Inflamação/imunologia , Inflamação/metabolismo
18.
Vaccine ; 42(12): 3066-3074, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584058

RESUMO

BACKGROUND: To improve the efficacy of Plasmodium falciparum malaria vaccine RTS,S/AS02, we conducted a study in 2001 in healthy, malaria-naïve adults administered RTS,S/AS02 in combination with FMP1, a recombinant merozoite surface-protein-1, C-terminal 42kD fragment. METHODS: A double-blind Phase I/IIa study randomized N = 60 subjects 1:1:1:1 to one of four groups, N = 15/group, to evaluate safety, immunogenicity, and efficacy of intra-deltoid half-doses of RTS,S/AS02 and FMP1/AS02 administered in the contralateral (RTS,S + FMP1-separate) or same (RTS,S + FMP1-same) sites, or FMP1/AS02 alone (FMP1-alone), or RTS,S/AS02 alone (RTS,S-alone) on a 0-, 1-, 3-month schedule. Subjects receiving three doses of vaccine and non-immunized controls (N = 11) were infected with homologous P. falciparum 3D7 sporozoites by Controlled Human Malaria Infection (CHMI). RESULTS: Subjects in all vaccination groups experienced mostly mild or moderate local and general adverse events that resolved within eight days. Anti-circumsporozoite antibody levels were lower when FMP1 and RTS,S were co-administered at the same site (35.0 µg/mL: 95 % CI 20.3-63), versus separate arms (57.4 µg/mL: 95 % CI 32.3-102) or RTS,S alone (62.0 µg/mL: 95 % CI: 37.8-101.8). RTS,S-specific lymphoproliferative responses and ex vivo ELISpot CSP-specific interferon-gamma (IFN-γ) responses were indistinguishable among groups receiving RTS,S/AS02. There was no difference in antibody to FMP1 among groups receiving FMP1/AS02. After CHMI, groups immunized with a RTS,S-containing regimen had âˆ¼ 30 % sterile protection against parasitemia, and equivalent delays in time-to-parasitemia. The FMP1/AS02 alone group showed no sterile immunity or delay in parasitemia. CONCLUSION: Co-administration of RTS,S and FMP1/AS02 reduced anti-RTS,S antibody, but did not affect tolerability, cellular immunity, or efficacy in a stringent CHMI model. Absence of efficacy or delay of patency in the sporozoite challenge model in the FMP1/AS02 group did not rule out efficacy of FMP1/AS02 in an endemic population. However, a Phase IIb trial of FMP1/AS02 in children in malaria-endemic Kenya did not demonstrate efficacy against natural infection. CLINICALTRIALS: gov identifier: NCT01556945.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Criança , Humanos , Adjuvantes Imunológicos , Anticorpos Antiprotozoários , Antígenos de Protozoários , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Proteína 1 de Superfície de Merozoito , Parasitemia , Plasmodium falciparum , Proteínas de Protozoários , Método Duplo-Cego
19.
Parasit Vectors ; 17(1): 146, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504274

RESUMO

BACKGROUND: Cryptosporidium parvum is an apicomplexan zoonotic parasite causing the diarrheal illness cryptosporidiosis in humans and animals. To invade the host intestinal epithelial cells, parasitic proteins expressed on the surface of sporozoites interact with host cells to facilitate the formation of parasitophorous vacuole for the parasite to reside and develop. The gp40 of C. parvum, named Cpgp40 and located on the surface of sporozoites, was proven to participate in the process of host cell invasion. METHODS: We utilized the purified Cpgp40 as a bait to obtain host cell proteins interacting with Cpgp40 through the glutathione S-transferase (GST) pull-down method. In vitro analysis, through bimolecular fluorescence complementation assay (BiFC) and coimmunoprecipitation (Co-IP), confirmed the solid interaction between Cpgp40 and ENO1. In addition, by using protein mutation and parasite infection rate analysis, it was demonstrated that ENO1 plays an important role in the C. parvum invasion of HCT-8 cells. RESULTS: To illustrate the functional activity of Cpgp40 interacting with host cells, we identified the alpha-enolase protein (ENO1) from HCT-8 cells, which showed direct interaction with Cpgp40. The mRNA level of ENO1 gene was significantly decreased at 3 and 24 h after C. parvum infection. Antibodies and siRNA specific to ENO1 showed the ability to neutralize C. parvum infection in vitro, which indicated the participation of ENO1 during the parasite invasion of HCT-8 cells. In addition, we further demonstrated that ENO1 protein was involved in the regulation of cytoplasmic matrix of HCT-8 cells during C. parvum invasion. Functional study of the protein mutation illustrated that ENO1 was also required for the endogenous development of C. parvum. CONCLUSIONS: In this study, we utilized the purified Cpgp40 as a bait to obtain host cell proteins ENO1 interacting with Cpgp40. Functional studies illustrated that the host cell protein ENO1 was involved in the regulation of tight junction and adherent junction proteins during C. parvum invasion and was required for endogenous development of C. parvum.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Animais , Cryptosporidium parvum/genética , Criptosporidiose/parasitologia , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Membrana/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Supressoras de Tumor/metabolismo
20.
Acta Parasitol ; 69(1): 1073-1077, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38499920

RESUMO

PURPOSE: Investigating the genetic variation in thioredoxin reductase (TrxR) and nitroreductase (NR) genes in both treatment-resistant and -sensitive Giardia duodenalis isolates can provide valuable information in identifying potential markers of resistance to metronidazole. The rapid increase in metronidazole treatment failures suggests the presence of genetic resistance mechanisms. By analyzing these genes, researchers can gain insights into the efficacy of metronidazole against G. duodenalis and potentially develop alternative treatment strategies. In this regard, four G. duodenalis isolates (two clinically sensitive and two clinically resistant to metronidazole) were collected from various hospitals of Shiraz, southwestern Iran. METHODS: Parasitological methods including sucrose flotation and microscopy were employed for the primary confirmation of G. duodenalis cysts in stool samples. Microscopy-positive samples were approved by SSU-PCR amplification of the parasite DNA. All four positive G. duodenalis specimens at SSU-PCR were afterward analyzed utilizing designed primers based on important metronidazole metabolism genes including TrxR, NR1, and NR2. RESULTS: Unlike TrxR gene, the results of NR1 and NR2 genes showed that there are non-synonymous variations between sequences of treatment-sensitive and -resistant samples compared to reference sequences. Furthermore, the outcomes of molecular docking revealed that there is an interaction between the protein sequence and spatial shape of treatment-resistant samples and metronidazole in the position of serine amino acid based on the NR1 gene. CONCLUSION: This issue can be one of the possible factors involved in the resistance of Giardia parasites to metronidazole. To reach more accurate results, a large sample size along with simulation and advanced molecular dynamics investigations are needed.


Assuntos
Antiprotozoários , Resistência a Medicamentos , Variação Genética , Giardia lamblia , Giardíase , Metronidazol , Nitrorredutases , Reação em Cadeia da Polimerase , Metronidazol/farmacologia , Giardia lamblia/genética , Giardia lamblia/efeitos dos fármacos , Giardíase/parasitologia , Giardíase/tratamento farmacológico , Humanos , Resistência a Medicamentos/genética , Antiprotozoários/farmacologia , Nitrorredutases/genética , Nitrorredutases/metabolismo , Irã (Geográfico) , Fezes/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Simulação de Acoplamento Molecular , DNA de Protozoário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA